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Determination of carbon fraction and
nitrogen concentration in tree foliage

by near infrared reflectance: a comparison
of statistical methods

Katherine L. Bolster, Mary E. Martin, and John D. Aber

Abstract: Further evaluation of near infrared reflectance spectroscopy as a method for the determination of
nitrogen, lignin, and cellulose concentrations in dry, ground, temperate forest woody foliage is presented.

A comparison is made between two regression methods, stepwise multiple linear regression and partial least
squares regression. The partial least squares method showed consistently lower standard error of calibration and
higher R? values with first and second difference equations, The first difference partial least squares regression
equation resulted in standard errors of calibration of 0.106%, with an R? of 0.97 for nitrogen, 1.613% with an
R? of 0.88 for lignin, and 2.103% with an R? of 0.89 for cellulose. The four most highly correlated wavelengths
in the near infrared region, and the chemical bonds represented, are shown for each constituent and both
regression methods. Generalizability of both methods for prediction of protein, lignin, and cellulose concentrations
on independent data sets is discussed. Prediction accuracy for independent data sets and species from other sites
was increased using partial least squares regression, but was poor for sample sets containing tissue types or
laboratory-measured concentration ranges beyond those of the calibration set.

Résumé : Les auteurs présentent une nouvelle évaluation de la spectroscopie de la réflectance dans le proche
infrarouge comme méthode pour measurer la concentration d’azote, de lignine et de cellulose dans le feuillage
moulu et sec des plantes ligneuses de la forét tempérée. Deux méthodes de régression sont comparées :

la régression linéaire séquentielle et la régression basée sur les moindres carrés partiels. La méthode basée sur
les moindres carrés partiels produisait toujours une erreur standard de calibration plus faible et une valeur de R*
plus élevée dans le cas des équations de premiére et de seconde différences. L’équation de premiere différence
obtenue avec la régression basée sur les moindres carrés partiels produisait une erreur standard de calibration et
une valeur de R? de 0,106% et de 0,97 pour 1'azote, de 1,613% et 0,88 pour la lignine et de 2,103% et 0,89 pour
la cellulose. Les quatre longueurs d’onde les plus étroitement corrélées dans la région du proche infrarouge, ainsi
que les liens chimiques auxquels elles sont associées, sont illustrés pour chaque constituants et chacune des deux
méthodes de régression. La possibilité de généraliser les deux méthodes pour prédire la concentration d’azote,

de lignine et de cellulose a partir d’ensembles de données indépendantes est discutée. La précision de

la prédiction pour des ensembles indépendants de données et des espéces provenant d’autres sites a €té améliorée
par 'utilisation de la régression basée sur les moindres carrés partiels. Par contre, elle était faible pour des
ensembles d’échantillons contenant des types de tissus ou des gammes de concentrations autres que ceux utilisés
pour la calibration.

[Traduit par la Rédaction]

Introduction

Near infrared reflectance spectroscopy (NIRS) uses
reflectance signals resulting from bending and stretching
vibrations in bonds between carbon, nitrogen, hydrogen,
and oxygen to measure the concentration of major classes
of chemical compounds in organic materials (Wetzel 1983;
Wessman 1990). NIRS has been shown to be an accurate,
precise, and rapid alternative method to wet chemistry
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procedures for determining the protein, fiber, moisture,
and oil concentrations of agricultural products (Norris et al.
1976; Shenk et al. 1981; Winch and Major 1981), and for
determining protein, lignin, and cellulose concentrations
in woody plant foliage (Wessman et al. 1988; McLellan
et al. 1991). Calibration is required to correlate the spectral
response of each sample at individual wavelengths with
the known chemical concentrations from laboratory analyses.
Varying by constituent, accuracy in NIRS analysis is depen-
dent upon accuracy of the laboratory procedures, and upon
measurement of the same chemical components by both
NIRS and laboratory methods.

Stepwise multiple linear regression (MLR) of first or
second difference spectra is the method most generally
used for developing these calibration equations for native
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woody plants (Wessman et al. 1988; McLellan et al. 1991).
Although it has been used successfully, MLR has the fol-
lowing limitations: (i) the large number of wavelengths
available for inclusion in calibration equations compared
with the number of samples and the number of major con-
stituents (Lindberg et al. 1983); (ii) the nonadditive behavior
of spectra of pure constituents versus a mixture of the
same constituents (Aber et al. 1994; Lindberg et al. 1983;
Sjostrom et al. 1983); (iii) the extensive spectral overlap of
individual chemical constituents, or the multicollinearity
problem (Lindberg et al. 1983; Lorber et al. 1987; Martens
and Jensen 1983; Naes and Martens 1984; Otto and
Wegscheider 1985; Wold et al. 1984); (iv) the loss of infor-
mation and resulting increase in signal to noise ratio when
reducing all the available data to a few selected wave-
lengths for the calibration equation (Martens and Jensen
1983); (v) the time required to evaluate the many possible
combinations of wavelengths for each constituent to deter-
mine the best calibrations (Lindberg et al. 1983; Martens
and Jensen 1983; Westerhaus 1989); and (vi) the poten-
tial that the best fitting wavelength combination fits the
random errors as well as the model (Westerhaus 1989).

An alternative technique, partial least squares (PLS)
regression, uses singular-value decomposition on the full
spectrum of data to reduce the data to a smaller set of
independent variables, or factors, as in principal component
regression (PCR). Unlike PCR, however, PLS calculates
for each principal component the loadings, or weights for
each wavelength, using information on chemical concen-
trations, so that the variation relevant to modeling of the
chemical variation in the data is described in the first PLS
factors (Martens and Naes 1987). The advantage of PLS
over PCR occurs if data noise, such as light scatter, causes
greater variation in the data than chemical variation. By
incorporating the chemical variability into the first factors
and the data noise into the later, less important factors
(Martens and Naes 1987), PLS often produces better results
with fewer factors than PCR (Naes and Martens 1984). It
also avoids the problems of wavelength selection and the
apparent arbitrary nature of calibration development using
MLR. PLS regressions result in one loading, or score, per
wavelength for each principal component used in the cal-
culations. The scores are regressed against the laboratory
values to produce one coefficient value per wavelength
for the final equation.

Few studies have compared various NIR calibration
methods for predictability of chemical constituents, and
none of these have been for foliage of native woody plants.
Research with agricultural products shows consistently
higher predictive power using equations developed with
PLS rather than PCR or MLR (Martens and Jensen 1983;
Naes and Martens 1985; Otto and Wegscheider 1985;
Lindberg et al. 1983; Shenk and Westerhaus 19915b).

For any method there is a requirement that the range
of constituent wet chemical values in the calibration samples
represent all future unknown samples of the same type
(Martens and Jensen 1983). The most important con-
sideration (Card et al. 1988) is incorporation of a wide
range of variation in the calibration data set in order to
build that variation into the calibration equation. Accuracy
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in prediction of unknown samples is dependent upon includ-
ing the full range of variability in the factors affecting the
chemical and physical properties of the unknown samples
(Marten et al. 1983; Shenk 1989).

As part of the National Aeronautics and Space
Administration (NASA) Accelerated Canopy Chemistry
Program (ACCP), we have developed the largest data set
available to date of foliage from native woody plants
(Maine, New Hampshire, Massachusetts, and Wisconsin)
analyzed for carbon fractions and nitrogen (Newman et al.
1994). The purposes of this paper are (i) to further evaluate
the accuracy of NIRS predictions for dried, ground, green
woody foliage; (ii) to compare two regression methods,
MLR and PLS, and determine the best analytical proce-
dure for green foliage of native woody plants; and (ii) to
describe the generalizability of the method to predict
protein, lignin, and cellulose concentrations for species
with laboratory-measured values outside the range of the
calibration samples.

Materials and methods

Sample collection

A total of 558 samples of fresh deciduous and conifer canopy
foliage were collected in June 1992 at Harvard Forest,
Petersham, Massachusetts (188 samples); and Blackhawk Island,
Wisconsin Dells, Wisconsin (182 samples); and in September
1992 at Howland Experimental Forest, Howland, Maine
(188 samples). These foliage samples, from a total of
16 deciduous and 10 conifer species, were collected in con-
junction with remote sensing overflights of the Airborne
Visible/Infrarcd Imaging Spectrometer (AVIRIS) (Vane et al.
1993) and are used as the calibration data set in this study,
referred to as the 92AVIRIS data set (Table 1). All 558 samples
were analyzed in the laboratory using standard wet chemical and
combustion methods for nitrogen, lignin, and cellulose con-
centrations (Newman et al. 1994).

Two additional data sets were used for validation in this
study. A total of 97 samples from 9 deciduous and 4 conifer
species were collected at the same Harvard Forest site in 1993
and analyzed by the same wet chemical and combustion methods
in the same laboratory (93HF data set, Table 2). The sampling
site and all but one of the species in the 93HF data set were
included in the calibration set. Chemical concentrations for all
three constituents fall within the constituent ranges for the
92 AVIRIS data set (Table 3).

The third data set consists of 31 samples of leaf, wood, and
root tissues collected from sites throughout North America and
the tropics as part of the National Science Foundation (NSF)
Long-term Ecological Research (LTER) intersite decomposition
study. All samples were again analyzed by the same wet
chemistry and combustion procedures in the same laboratory
(Newman et al. 1994). A subset of the LTER data set,
LTERFOL, consisted of only the foliage samples from 14 woody
plants. The samples in the LTER data set encompass variability
in tissue types as well as sampling sites not represented in the
calibration data set. The range of laboratory values for all three
constituents exceeds that of the calibration data set (Table 3).
The samples in the LTERFOL subset, while similar in tissue
type, include only six of the species represented in the cali-
bration data set. The minimum percent nitrogen laboratory
value for LTERFOL is outside the range of the calibration data,
while both the minimum and maximum values for lignin also fall
outside the calibration range (Table 3).
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Table 1. Laboratory reference

value statistics by species for 1992 AVIRIS data set.

Can. J. For. Res. Vol. 26, 1996

% nitrogen

% lignin

% cellulose

n  Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD
Abies balsamea (L.) Mill. 3 1.00 1.50 1.19  0.27 23.06 30.17 2643 3.57 30.19 31.78 31.21 0.88
Acer pensylvanicum L. 1 166 166 1.66 20.46 2046 20.46 36.88 36.88  36.88
Acer rubrum L. 94  1.02 274 1.63 031 13.83 21.56 18.15 1.48 2420 37.68 30.33 2.3
Acer saccharum L. 30 1.24 2.60 2.08 040 1538 2068 17.57 1.19 30.50 46.00 3899 4.68
Betula lenta L. 1 220 2.20 2.20 18.31 18.31 18.31 40.98 40.98 40.98
Betula papyrifera Marsh. 30 1.21 264 1.95 043 1755 2545 21.61 208 2945 38.89 34.11 2.65
Betula populifolia Marsh. 1 298 298 2098 25.66 2566 25.66 3440 3440 3440
Carya ovata (Mill.) K. Koch 2 274 276 275 0.01 1443 1635 1539 1.36 5399 5400 53.99 0.01
Fagus grandifolia Ehrh. 14 159 282 200 046 1390 3041 2421 6.47 37.35 4947 4401 3.83
Fraxinus americana L. 10 1.81 2.77 2.15 0.26 15.04 20.24 17.62 1.54 51.96 67.57 55.73 4.51
Larix laricina (Du Roi) K. Koch 10 225 2.67 247 0.16 2567 2933 29.71 3.07 27.24 32,11 31.75 2.96
Picea abies (L.) Karst. 20 098 1.45 1.24  0.12 21.88 28.10 2458 1.93 36.90 4497 4071 2.22
Picea glauca (Moench) Voss 1 1.09 1.09 1.09 2433 2433 2433 40.82 40.82  40.82
Picea mariana (Mill.) BSP 5 090 1.04 095 0.05 2033 22,65 21.99 094 33.17 3597 3428 1.21
Picea rubens Sarg. 50 069 124 093 0.09 21.16 31.05 2689 216 31.76 48.12 40.18 2.31
Pinus resinosa Ait. 31 093 141 1.14 0.18 23.97 29.64 2648 1.38 36.75 41.16 3891 1.47
Pinus strobus L. 40 1.08 2.09 1.54 0.29 23.25 31.00 2643 1.80 33.38 4989 3850 3.04
Populus grandidentata Michx. 10 1.79 258 229 032 2295 3220 27.88 2.57 30.59 3974 3497 2.53
Popitlus tremuloides Michx. 7 1.76 240 2.09 025 2310 2855 2655 1.75 27.53 36.03 32.46 291
Prunus serotina Ehrh. 15 240 319 263 026 1381 2095 17.79 2.08 3586 52.12 41.07 3.95
Quercus alba L. 29 230 306 262 022 18.00 27.00 21.71 219 37.26 49.55 43.64 243
Quercus rubra L. 94 193 3.09 239 042 2049 3341 2638 297 34.07 4829 41.85 3.32
Thuja occidentalis L. 4 1.09 1.43 1.27  0.15 25.12 27.11 2623 0.85 31.01 37.83 34.64 2.83
Tilia americana L. 22 276 3.51 3,11 022 14.07 2428 1942 256 41.63 5441 4738 341
Tsuga canadensis (L.) Carriere 46 0.83 1.39 1.08 0.26 1375 2069 16.64 4.13 23.69 38.87 2911 7.24
Ulmus rubra Muhl. 5 243 334 297 034 1242 1654 14.58 1.48 41.20 5226 46.52 4.35
Table 2. Laboratory reference value statistics by species for 1993 Harvard Forest data set.

% nitrogen % lignin % cellulose

n  Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD
Acer pensylvanicum L. 1 1.69 1.69 1.69 18.60 18.60 18.60 40.93 4093 40.93
Acer rubrum L. 14 1.35 2.03 1.69 0.18 1643 22.85 19.17 1.83 2491 3566 3092 267
Betula alleghaniensis Britt. 7 209 260 230 0.19 2286 2625 2474 142 3580 4146 37.52 2.09
Betula lenta L. 7 213 250 231 0.15 2363 2862 2647 1.75 33.88 4557 3997 3.60
Betula papyrifera Marsh. 4 211 221 2.18 0.05 19.09 2443 21.50 248 3444 3984 36.74 2.37
Fagus grandifolia Ehrh, 4 1.85 239 2,09 025 2626 30.04 2820 1.70 43.99 53.15 4724 4.08
Fraxinus americana L. 2 1.87 1.89 1.88  0.01 16.01 1657 16.29 040 48.51 49.04 48.78 0.37
Picea abies (L.) Karst. 1 1.00 1.00 1.00 25.57 25.57 2557 38.07 38.07 38.07
Pinus resinosa Ait. 5 1.00 1.15 1.06 0.06 24.69 2648 2587 0.73 3742 41.67 39.90 1.62
Pinus strobus L. 6 1.28 1.96 1.42  0.27 24.69 2648 2589 0.96 37.42  41.67 39.24 1.00
Quercus rubra L. 36 157 242 1.99 0.21 2045 27.05 2391 1.58 36.27 4389 40.68 1.82
Quercus velutina Lam. 4 198 2.67 226 034 2491 2851 2630 1.72 35.24 4235 3891 3.54
Tsuga canadensis (L.) Carriere 6 090 1.11  1.00 0.09 1495 17.87 1650 1.06 2825 3448 31.17 231

Sample preparation

Spectral data collection

All fresh green leaf samples initially were air dried and then
oven-dried at 70°C. Dried leaves were ground in a Wiley mill
and passed through a |-mm screen for optimal particle size
(Windham et al. 1989). Prior to scanning, ground samples were
redried overnight (approx. 15h) in a forced air convection oven
at 70°C.

Near infrared and visible diffuse reflectance spectral data were
collected on a NIRSystems 6500 monochromator (NIRSystems
Inc., Silver Spring, Md.) with a spinning cup module, which
scanned at wavelengths from 400 to 2498 nm, at 2-nm intervals
with a bandwidth of 10 nm. All reflectance values are relative
to a ceramic standard. The software used both for data collection
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Table 3. Laboratory reference value statistics for 1992 AVIRIS calibration and validation data sets.

% nitrogen % lignin % cellulose

Data set n Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD

92AVIRC3 372 0.78 3.46 1.84 0.66 10.32  33.70 22.41 4.61 23.69 57.06 37.68 6.34
92AVIRV3 186 0.69 3.51 1.87 0.67 14.07 33.41 2290 4.51 24.20  57.97 38.26 6.33
92AVIRIS 558 0.69 3.51 1.85 0.66 10.32  33.70 22.58 458 23.69 5797 37.87 6.34
93HF 97*  0.90 2.67 1.86 0.43 1495 30.04 2332 344 2491 53.15 38.59 4.86
LTER 31 0.22 2.40 0.88 0.58 7.60 44.62 23.10 840 2456 74.73 46.36 13.87
LTERFOL 14 0.22 2.40 0.90 0.61 7.60 41.40 2549 873 2672 4920 38.04 5.29
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“n = 94 for lignin and cellulose.

and for data analysis was NIRS2, version 3.00, from Infrasoft
International (Silver Spring, Md.). Because spectrophotometric
signals are not linearly related to the chemical composition of
a sample, a response linearization pretreatment for reflectance
data to apparent absorbance, A = log(1/R) (Hruschka 1987;
Martens and Naes 1987; Naes and Martens 1984), is done prior
to storing the spectral values.

Using the spinning cup module on the instrument, the sample
is automatically rotated and scanned 32 times in 60 s. The ref-
erence ceramic is scanned 16 times before and 16 times after the
sample scans to adjust for any possible drift that may have
occurred during scanning. The resulting sample spectrum is
the average of the 32 scans. To minimize any possible packing
or subsampling error, two subsamples were scanned for each
sample. All material from the first subsample was replaced in
the jar, the sample was again thoroughly mixed, and another
subsample was scanned. The sample spectrum used in the data
analysis was the average of the two subsample spectra.

Calibration

Regression methods

Two types of regression analyses were compared: stepwise for-
ward MLR, proposed by Norris et al. (1976) for this application;
and PLS regression, developed by Wold (1982). Stepwise
regression (referred to as step-up in the software) selects the first
wavelength that gives the best single-term calibration; then
selects the best second wavelength for the second variable for
a two-term equation, and so on. The final equation consists of
the statistically best wavelength combination. One problem
with MLR is the probability of overfitting the data. Therefore,
the general rule in stepwise regression is one term in the
equation, and 10 samples in the calibration data set, for each
regression constant and each parameter that varies, such as
wavelength (Hruschka 1987). Four terms, or wavelengths, were
used in this study.

PLS was run with a maximum of 15 factors, or principal
components, set by the software based on the number of samples
in the data set. Final equation statistics resulted from the aver-
age of four cross-validation groups, or internal subsets of cali-
bration samples, which during the regression calculations are
alternately excluded from the calibration to be used for internal
prediction, and then are included in the regression calculations.
In other words, using four cross-validation groups produces
four iterations of calibrations and predictions so that each sam-
ple is predicted once during equation development. According
to Martens and Naes (1987), the best internal validation criterion
is cross validation, repeated until all the calibration samples
have been treated as unknowns. The equations with the lowest
SECV were used to predict against the validation data sets.
Final calibration equations were developed using the entire

92AVIRIS data set. Robustness and generality of the calibration
equations were then tested against two independent data sets:
93HF and LTER, including the LTERFOL subset.

Regression statistics

To compare regression equations for the calibration data set,
the coefficient of determination (R2 in MLR, or one minus the
variance ratio (I — VR) in PLS) and the standard error of cali-
bration statistic (SEC in MLR, or SECV in PLS, the standard
error of cross validation) are evaluated independently for each
constituent. To compare equation performance on external
validation data sets, the standard error of prediction (SEP) for
both MLR and PLS is evaluated for each constituent.

The PLS statistic for total explained variation, 1 — VR, or
the ratio of cross-validation error squared to the standard devi-
ation of the data set squared, is a conservative estimate of R?,
where R? equals one minus the ratio of SEC to the standard
deviation. SEC, the standard deviation of the residuals, or dif-
ferences between the actual laboratory, wet chemistry values
and the spectrometrically predicted values for samples in the
calibration data set, is calculated as the square root of the mean
square for the residuals. SEC is an estimate of the best accuracy
obtainable using the specific wavelengths of the calibration
equation (Mark and Workman 1991).

SECV, however, is a true estimate of the prediction accu-
racy of the equation and is always larger than the calibration
error (Infrasoft International 1992). SECV is the square root
of the mean square of the residual for N — 1 degrees of freedom.
Based on an iterative calibration—validation algorithm, which
selects sets of samples from the calibration set for calibration
and for validation, SECV is used as the statistic for determin-
ing the best number of independent variables for the calibration
equation. The equation with the lowest SECV is often selected
as the best calibration (Mark and Workman 1991).

Usually larger than the standard error of calibration, SEP
is calculated as the root mean square for residuals for N degrees
of freedom, using the difference between laboratory and pre-
dicted values on independent validation data sets (Mark and
Workman 1991). SEP is a true measure of the performance of
the equation on unknown samples and is the preferred statistic
to use for comparison of regression equations (Westerhaus
1989).

Math treatments

Several math treatments (i.e., data transformations using finite-
difference approximations to derivatives and smoothing) were
tested to compare first and second difference transformations,
sampling intervals (also called segment or gap) for the finite-
difference calculation, and smoothing intervals. Derivative
spectroscopy enhances small peaks or shoulders that may be
masked by broad band features or background noise, thereby
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Table 4. Calibration and validation statistics for partial least squares (PLS) regression and stepwise multiple linear
regression (MLR) methods.

PLS regression” Stepwise MLR®

Data set (1,5,5,1) (2,5,5,1) (2,10,10,1) Data set (1,5,5,1) (2,5,5,1) (2,10,10,1)
% nitrogen
92AVIRIS 0.106 0.105 0.107 92AVIRIS 0.157 0.127 0.129
1 — VR 0.974 0.975 0.974 R? 0.943 0.963 0.962
No. factors 13 13 13 No. terms 4 4 4
92AVIRV3 0.97, 0.11 0.97, 0.11 0.97, 0.11 92AVIRV3 0.85, 0.15 0.97, 0.12 0.97, 0.12
93HF 0.93, 0.14 0.93, 0.14 0.93, 0.14 93HF 0.87, 0.17 0.90, 0.15 0.91, 0.14
LTER 0.81, 0.29 0.82, 0.31 0.82, 0.31 LTER 0.75, 0.38 0.82, 0.32 0.78, 0.28
LTERFOL 0.86, 0.25 0.88, 0.26 0.84, 0.27 LTERFOL 0.72, 0.41 0.88, 0.35 0.78, 0.29
% lignin
92 AVIRIS 1.613 1.617 1.641 92AVIRIS 2.603 2.260 2.491
1 — VR 0.876 0.875 0.871 R? 0.677 0.756 0.704
No. factors 13 12 13 No. terms 4 4 4
92AVIRV3 0.88, 1.60 0.89, 1.53 0.87, 1.65 92AVIRV3 0.62, 2.77 0.75, 2.25 0.66, 2.64
93HF 0.78, 1.69 0.75, 1.74 0.74, 1.82 93HF 0.27, 3.11 0.62, 2.13 0.45, 2.59
LTER 0.56, 6.00 0.60, 5.80 0.68, 5.24 LTER 0.21, 8.26 0.36, 7.34 0.48, 6.09
LTERFOL 0.73, 5.16 0.69, 5.67 0.72, 5.29 LTERFOL 0.38, 8.29 0.44,7.18 0.54, 6.11
% cellulose
92 AVIRIS 2.103 2.135 2.148 92AVIRIS 2.720 3.002 2.786
1 — VR 0.890 0.886 0.885 R? 0.816 0.776 0.807
No. factors 11 11 13 No. terms 4 4 4
92AVIRV3 0.86, 2.34 0.86, 2.35 0.86, 2.34 92AVIRV3 0.78, 2.95 0.73, 3.26 0.77, 3.02
93HF 0.87, 1.76 0.84, 1.98 0.83, 2.04 93HF 0.82, 2.07 0.69, 2.75 0.74, 2.56
LTER 0.85, 5.57 0.87,7.51 0.85, 9.01 LTER 0.84, 5.96 0.61, 8.77 0.81, 7.51
LTERFOL 0.69, 3.94 0.69, 3.08 0.64, 3.21 LTERFOL 0.48, 3.85 0.34, 6.14 0.48, 4.96

Note: Goodness of fit statistics are R* (MLR equations) and 1 — VR (variance ratio, PLS). For calibration data set, 92AVIRIS value
is the standard error of calibration (SECV or SEC). Values for validation data sets are R* and standard error of prediction (SEP).
“Numbers in parentheses are sets that represent the math treatment and are described in the text.

isolating weaker signals and separating overlapping bands, and
also removes base-line shifts resulting from differences in par-
ticle size (Dixit and Ram 1985). A math treatment is described
by four numbers in parentheses, which are, respectively, (i) the
order of the difference: (ii) the interval, or number of data
points (at 2 nm each) over which an average is taken; the num-
ber of data points used for (iii) a first running-average smooth
and (iv) a second running-average smooth (a value of 1 indicates
no smooth). In this software smoothing was done after the dif-
ference calculation. There is no single math treatment or cali-
bration procedure that gives the best results for all constituents
and for all products (Shenk and Westerhaus 1993). These param-
eters may be found experimentally through regression results.

Data set selection

To develop the initial calibration equations, two-thirds of the
92AVIRIS samples were used for calibration, while one-third
of the samples were reserved for validation. To create an even
distribution of constituent concentrations for both the calibra-
tion and validation data sets, two methods were used. Previous
studies in this laboratory (McLellan et al. 1991) and others
(Abrams 1989; Windham et al. 1989) have shown that random
selection of calibration samples gave the best results. However,
an alternative method available using the Center program in
the NIRS?2 software package (Infrasoft International 1992) is

sample selection based on the spectral variability within the
data set (Abrams 1989; Windham et al. 1989; Shenk and
Westerhaus 1991a, 1991b). The Mahalanobis distances (H),
or R? distances, from a sample to the average spectrum in the
file were computed. The spectra in the data set were then
reordered according to ascending H value, to assure an even
spectral distribution for a split between calibration—validation
samples within a data set. With both random and centering
methods, every third sample was removed from the total data set
for validation, while the remaining two-thirds were used to
develop the initial calibration equations. The centered files
were produced using the same math treatments that were used
for regression analyses.

Math treatments of (1, 5, 5, 1), (2,5, 5, 1), and (2, 10, 10, 1)
were chosen both for the preliminary trials of calibration data set
splits into calibration and validation files based on spectral
centering, and for the regression analyses. A math treatment
of (2, 10, 10, 1), second difference, calculated over ten 2-nm
data points, and smoothed once over the same range, most
closely corresponds to that used in previous studies in our
laboratory (McLellan et al. 1991). Results of the random
calibration-validation data-set split versus the centered splits,
using all four math treatments, showed that equations with the
best SECV and SEP were developed using the randomly
split file.
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Results and discussion

Calibration statistics

Overall, comparisons between MLR and PLS regression
showed consistently lower SEC and higher R” values for the
PLS equations (Table 4). According to SEC values, the
best overall math treatment using PLS was (1, 5, 5, 1),
although differences between treatments were small. Second
derivative calibration equations work best for MLR
(cf. Marten et al. 1983; Shenk and Westerhaus 19915).
Comparing equations with the (1, 5, 5, 1) math treatment,
PLS showed an improvement in SECV over the SEC for
MLR, from 0.157 to 0.106% for nitrogen, from 2.603 to
1.613% for lignin, and from 2.720 to 2.103% for cellu-
lose. Likewise, the PLS (1, 5, 5, 1) equations showed an
improvement in 1 — VR over R? for MLR, from 0.943 to
0.974 for nitrogen, from 0.667 to 0.876 for lignin, and
from 0.816 to 0.890 for cellulose. Differences between
regression statistics by constituent are due in part to dif-
ferences in the precision and accuracy of the laboratory
reference methods used. Equations for those constituents
for which laboratory methods have higher precision and
accuracy are expected to explain a greater proportion of
variation in the data set.

Validation statistics

There was a close relationship between those math treat-
ments that calibrated well and those that validated well
against both the one-third of the 92AVIRIS data set held
back from the calibration (92AVIRV3) and the indepen-
dent data set collected at the Harvard Forest in 1993 (93HE,
Table 4). Again, the first difference treatment was best for
PLS, and the second difference treatments were generally
best for MLR. As expected, SEP values were slightly above
SEC values for each treatment, with the increases in SEP
over SEC similar to those seen in previous studies (e.g.,
McLellan et al. 1991). All values approximate the analytical
precision of wet chemical analyses (McLellan et al. 1991;
Newman et al. 1994). This substantiates the applicability of
the NIRS method for the determination of the concentration
of nitrogen, lignin, and cellulose in foliar samples that fall
within the same species groups and concentration ranges as
the calibration data set (Fig. 1).

However, SEP values are 2—4 times higher for the LTER
and LTERFOL validation data sets (Table 4). While vali-
dation was better for nitrogen than for lignin or cellulose,
and was better for the more restricted LTERFOL data set
(especially for cellulose for which the validation data set fell
within the range of the calibration data set, Table 3), all
values were substantially higher than the analytical pre-
cision of wet chemistry and combustion techniques (Fig. 2
and 3). In general, PLS produced lower SEP values for
all constituents, data sets, and math treatments.

Wavelength selection

The arbitrary and inconsistent nature of wavelength selec-
tion has been a constant criticism leveled against the MLR
technique. PLS avoids this limitation by using information
in all wavelengths and assigning a coefficient to each. The
wavelengths with the highest coefficients contain the most
information on the concentration of that constituent and
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Fig. 1. Measured chemical constituent concentrations for
the Harvard Forest 1993 validation data set compared with
values predicted using the calibration equation derived
from the 92AVIRIS data set by PLS using the (1, 5, 5, 1)
math treatment: (a) nitrogen, (b) lignin, and (¢) cellulose.
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should relate to known absorption features of each consti-
tuent. Comparing results of statistical wavelength selec-
tion by MLR and maximum coefficients in PLS with pub-
lished spectral relationships to chemical bond types allows
an analysis of the consistency of the two techniques and the
accuracy of each in identifying wavelengths with high
information content.

With a spectral resolution of the instrument at 10 nm, and
with a 5- or 10-data point (i.e., a 10- or 20-nm) interval
used in the difference calculation, peaks may occur within
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Fig. 2. Measured chemical constituent concentrations for the
LTER validation data set compared with values predicted
using the calibration equation derived from the 92AVIRIS
data set by PLS using the (1, 5, 5, 1) math treatment:

(a) nitrogen, (b) lignin, and (c) cellulose.
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a 10-nm range for first difference equations, and within a
30- or 60-nm range for second difference calculations.
Data smoothing with a 5- or 10-data point interval further
offsets the location of constituent absorption peaks. Thus,
we consider wavelengths with maximum coefficient values
occurring within 10-nm of a reported structure as repre-
sentative of the structure (Table 5; chemical structures are
according to Shenk et al. 1992; Osborne and Fearn 1986;
Murray and Williams 1987; several wavelengths occurring
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Fig. 3. Measured chemical constituent concentrations for the
LTERFOL validation data set compared with values
predicted using the calibration equation derived from the
92AVIRIS data set by PLS using the (1, 5, 5, 1) math
treatment: (a) nitrogen, (b) lignin, and (¢) cellulose.
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at greater than 10 nm but less than 20 nm from a given
structure are indicated).

For the 92AVIRIS data set, the best statistical combi-
nation of four wavelengths (MLR) and the four wave-
lengths with highest regression coefficients (PLS) for pre-
dicting nitrogen concentration are generally similar between
regression techniques and across math treatments (Table 5).
They are also generally associated with known absorption
features of nitrogen-containing compounds (see similar
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Table 5. 1992 AVIRIS regression equations: wavelength (nm) and corresponding chemical

structure.
(1,5,5,1) (2,5,5,1) (2,10,10,1)
PLS regression’

1972 CONH, 1984 °~  CONH, 1984 CONH,
Nitrogen 2044 CONH/H, 2056 Protein 2056 Protein

2068 Urea 2076 Urea 1956 Starch

2476 Protein 2344 Protein 2080 Urea

1676 Aromatic 1688 Aromatic 1688 Aromatic
Lignin 1428 ArOH 2384 Oil 2384 Oil

1716 -CH, 2324 Starch 1748 -SH

22438 Amino acid 1748 -SH 1396 ‘CH,

2468 -CH, 2288 Starch 2368 Cellulose**
Cellulose 2224 Amino acid’ 2368 Cellulose*’ 2452 Starch*

2160 ‘HC=CH 1696 -CH, 2396 oil’ .

2384 Oil 2152 CONH,* 1804 Cellulose’

Stepwise MLR®

2140 ‘NC=CH 1556 CONH' 2168 ‘HC=CH
Nitrogen 1928 CONH 1980 CONH, 1980 CONH,

2156 CONH,* 2044 CONH/H, 1192 ‘CH,

2044 CONH/H, 2076 Urea 2056 Protein

2392 oil’ 2384 Oil 1288 O—H Stretch**
Lignin 1908 P—OH 2452 Starch*’ 2384 0Oil

2444 Starch*" 1436 ‘CH, 1484 ‘CONH,

1868 C—ClI* 2068 Oil 1928 Starch

2084 ‘OH 2144 ‘NC=CH 2144 ‘NC=CH
Cellulose 2472 ‘CH, 2260 Cellulose 2256 Cellulose® .

1528 RNH, 1420 ArOH ’ 2364 Cellulose*’

1744 -SH 2368 Cellulose™" 1560 CONH

Note: Numbers in parentheses are sets that represent the math treatment and are described in the text.
Chemical structures are within 10 nm of specified wavelengths, according to Shenk et al. (1992), except when
marked with one asterisk, according to Osborne and Fearn (1986), or with two asterisks, according to Murray
and Williams (1987). Structures indicated by a dagger are 10- to 20-nm approximations to specified

wavelengths.

“Data shown are the four wavelengths with the highest regression coefficient values.

Data shown are the wavelengths used for the four terms of the equation.

results by Johnson and Billow 1996; Wessman et al. 1988;
Peterson et al. 1988). Wavelengths with the highest regres-
sion coefficient values for nitrogen were consistent in PLS
first and second difference equations. The highest value
occurred near a N-H combination band feature at 1980 nm
(Shenk et al. 1992; Wessman 1990). High coefficients also
occurred near 2060 nm, another N-H combination band
feature, and within the range of nitrogen-containing com-
pounds between 2040 and 2080 nm (Shenk et al. 1992;
Wessman 1990). Figure 4a is a nitrogen correlogram of
the 92AVIRIS data set, and Fig. 5a is a plot of the
PLS regression coefficients for nitrogen in the first
difference equation. For this application, a correlogram is
a plot of the correlation coefficient (r) for the chemical
concentration of a constituent for all samples at each given
wavelength. The correlograms are calculated for first dif-
ference absorbance data for comparison with the full-
spectrum plot of regression coefficients in the PLS first

difference equation. First difference plots of correlation
coefficients and PLS regression coefficients show similar
prominent spectral features.

Lignin, a compound that is not well defined, has char-
acteristic aromatic C—H overtone absorption features near
1685 and 1143 nm (Shenk et al. 1992; Wessman 1990).
The most highly correlated wavelength for all PLS equations
occurred close to the first overtone feature near 1685 nm.
Overall, there is less wavelength consistency between
equations for lignin than for nitrogen (Table 5). The first
difference simple correlation plot (Fig. 4b) and the first
difference PLS regression coefficient plot (Fig. 5b) for
lignin show the most highly correlated wavelengths for
both correlation and regression equation.

Wavelengths associated with cellulose include struc-
turally similar chemical compounds such as starch (Table 5).
The most highly correlated feature reported previously for
this constituent occurred at 2140 nm (McLellan et al. 1991).
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Fig. 4. Correlation coetficients from simple linear
regressions of individual wavelengths against constituent
concentrations for the 92AVIRIS data set: (a) nitrogen,
() lignin, and (c) cellulose.
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A strong absorption feature between approximately 2000 and
2100 nm seen in the correlation plot (Fig. 4c) represents a
strong O-H combination band that occurs at 2100 nm
(Wessman 1990). Two prominent wavelengths within this
region are also seen on the regression coefficient plot for
cellulose (Fig. 5¢).

Conclusions

Results show that the full-spectrum calibration method,
PLS regression, performed better than stepwise MLR on dry,
ground, green foliage samples of native woody plants.

Can. J. For. Res. Vol. 26, 1996

Fig. 5. Regression coefficients derived for all wavelengths
by PLS for the 92AVIRIS data set. Higher coefficients
signify wavelengths with more information content for
the constituent plotted: («) nitrogen, (b) lignin, and

(¢) cellulose.
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Problems due to multicollinearity between wavelengths
and the reduction of relevant information into a few avail-
able wavelengths selected as MLR regression factors are
overcome in the PLS method. Comparisons between correlo-
grams and PLS regression coefficients showed similari-
ties in prominent spectral features by constituent. Using
all available wavelength information, and concentrating
into the first factors the near infrared information with
relevance to the chemical constituents, PLS regression
increased prediction accuracy on independent data sets.
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Validation of the equations derived from foliage of tem-
perate woody species was acceptable when the validation
data set contained samples from similar sites and species,
and concentrations of constituents predicted fell within
the range of those in the calibration data set. However,
SEP on samples from different types of tissues or with
measured concentrations of nitrogen, lignin, and cellulose
beyond the range of variation in the calibration data set
were 2—4 times higher than analytical precision of wet
chemical and combustion techniques. The development of
fully generalized NIRS calibration equations will require
including in the calibration data set additional tissue types
as well as ecologically diverse species with broad ranges of
constituent concentrations.
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